Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
2.
Arq. bras. endocrinol. metab ; 55(5): 303-313, June 2011. ilus
Article in Portuguese | LILACS | ID: lil-604159

ABSTRACT

O ciclo glicose-ácido graxo explica a preferência do tecido muscular pelos ácidos graxos durante atividade moderada de longa duração. Em contraste, durante o exercício de alta intensidade, há aumento na disponibilidade e na taxa de oxidação de glicose. A produção de espécies reativas de oxigênio (EROs) durante a atividade muscular sugere que o balanço redox intracelular é importante na regulação do metabolismo de lipídios/carboidratos. As EROs diminuem a atividade do ciclo de Krebs e aumentam a atividade da proteína desacopladora mitocondrial. O efeito oposto é esperado durante a atividade moderada. Assim, as questões levantadas nesta revisão são: Por que o músculo esquelético utiliza preferencialmente os lipídios no estado basal e de atividade moderada? Por que o ciclo glicose-ácido graxo falha em exercer seus efeitos durante o exercício intenso? Como o músculo esquelético regula o metabolismo de lipídios e carboidratos em regime envolvendo o ciclo contração-relaxamento.


The glucose-fatty acid cycle explains the preference for fatty acid during moderate and long duration physical exercise. In contrast, there is a high glucose availability and oxidation rate in response to intense physical exercise. The reactive oxygen species (ROS) production during physical exercise suggests that the redox balance is important to regulate of lipids/carbohydrate metabolism. ROS reduces the activity of the Krebs cycle, and increases the activity of mitochondrial uncoupling proteins. The opposite effects happen during moderate physical activity. Thus, some issues is highlighted in the present review: Why does skeletal muscle prefer lipids in the basal and during moderate physical activity? Why does glucose-fatty acid fail to carry out their effects during intense physical exercise? How skeletal muscles regulate the lipids and carbohydrate metabolism during the contraction-relaxation cycle?.


Subject(s)
Animals , Humans , Exercise/physiology , Fatty Acids/metabolism , Glucose/metabolism , Muscle, Skeletal/metabolism , Dietary Carbohydrates/metabolism , Reactive Oxygen Species/metabolism
3.
Rev. bras. med. esporte ; 14(1): 57-63, jan.-fev. 2008. ilus
Article in Portuguese | LILACS | ID: lil-487437

ABSTRACT

O exercício físico prolongado reduz os estoques de glicogênio muscular. Nessas condições, os processos de fadiga muscular são estimulados coincidindo com um aumento na produção de espécies reativas de oxigênio. A suplementação de carboidratos ou de antioxidantes isoladamente contribui para a melhora da performance muscular, sugerindo um efeito importante da depleção de substrato (glicose) e do aumento da produção de EROs no desenvolvimento da fadiga muscular durante a atividade física. Embora o mecanismo seja desconhecido, estamos propondo neste estudo que uma maior disponibilidade de glicogênio poderia favorecer uma maior atividade da via das pentoses fosfato, aumentando a disponibilidade de NADPH e GSH no tecido muscular esquelético. Uma maior capacidade antioxidante aumentaria a capacidade do tecido muscular em atividade, mantendo o equilíbrio redox durante atividade física prolongada e melhorando o desempenho. Neste processo, o ciclo glicose-ácido graxo pode ser importante aumentando a oxidação de lipídio e reduzindo o consumo de glicogênio durante a atividade prolongada. Além disso, um aumento na produção de EROs pode reduzir a atividade de enzimas importantes do metabolismo celular incluindo a aconitase e a a-cetoglutarato desidrogenase, comprometendo a produção de energia oxidativa, via predominante na produção de ATP durante a atividade muscular prolongada.


Fatigue is closely related to the depletion of glycogen in the skeletal muscle during prolonged exercise. Under this condition, the production of oxygen reactive species (ROS) is substantially increased. It has been shown that dietary supplementation of carbohydrate or antioxidant attenuates muscle fatigue during contraction. This suggests that glycogen availability and/or elevated ROS production plays an important role on muscle fatigue development during prolonged muscle activity. Although the mechanism is still unknown, we propose that elevated muscle glycogen availability may lead to a high activity of hexose monophosphate pathway, increasing the NADPH and glutathione concentration in the skeletal muscle tissue. Elevated antioxidant capacity would increase the muscle redox balance during muscle contraction, improving performance. In this process, the glucose-fatty acid cycle may be important to increase lipid oxidation and consequently decrease glycogen utilization during prolonged activity. In addition, an elevated ROS production could reduce the activity of key metabolic enzymes including aconitase and a-ketoglutarate dehydrogenase, decreasing the oxidative energy production in the skeletal muscle during prolonged activity.


Subject(s)
Antioxidants , Energy Metabolism , Exercise , Muscle Fatigue , Muscle, Skeletal/metabolism
4.
Rev. bras. ciênc. mov ; 15(2): 73-80, 2007. ilus, tab
Article in Portuguese | LILACS | ID: lil-524928

ABSTRACT

Em exercícios físicos de intensidade moderada, a transição do metabolismo de predominantemente anaeróbio para predominantemente aeróbio nos músculos em atividade é um passo chave para melhorar o desempenho. O aumento no aporte de oxigênio e nutrientes, tais como ácidos graxos livres (AGL) e glicose, que acompanha o maior fluxo sangüíneo, é requerido para que esta transição ocorra. Os mecanismos envolvidos na dilatação dos vasos nos músculos esqueléticos durante o exercício físico não são completamente conhecidos. Propomos, neste artigo, a participação dos AGL neste processo. A presença das proteínas desacopladoras-2 e -3 (UCP-2 e -3) no músculo esquelético, cuja função é regulada por AGL, abre a possibilidade de que esses metabólitos podem atuar como desacopladores mitocondriais neste tecido. O aumento na atividade lipolítica no tecido adiposo durante o exercício físico resulta em aumento na concentração plasmática de AGL. Estes poderiam, então, atuar nas proteínas desacopladoras mitocondriais nos músculos em atividade, aumentando a produção de calor local. Propomos que este efeito calorigênico é importante para a ativação da óxido nítrico sintase, resultando em aumento na produção de óxido nítrico que é um vasodilatador potente. Desta forma, os AGL seriam mediadores importantes para a adaptação do metabolismo muscular durante o exercício físico prolongado, garantindo o aporte de oxigênio e nutrientes por aumento do fluxo sangüíneo para os músculos em contração.


In moderate physical exercise, the transition from predominantly anaerobic toward predominantly aerobic metabolism is a key step to improve performance. Increase in the supply of oxygen and nutrients, such as free fatty acids (FFA) and glucose, which accompanies high blood flow, is required for this transition. The mechanisms involved in the vasodilation in skeletal muscle during physical exercise are not completely known yet. In this article, we postulate that FFA participate in this process. The presence of uncoupling protein-2 and -3 (UCP- 2 and -3) in skeletal muscle, whose function is regulated by FFA, suggests that these metabolites may act as mitochondrial uncouplers in this tissue. The increase in the lipolytic activity in adipose tissue during physical exercise leads to increased plasma FFA levels. The FFA can then act on the UCPs in contracting muscles, increasing the local heat production. We propose that this calorigenic effect of FFA is important for nitric oxide synthase activation, resulting in nitric oxide production that is a potent vasodilator. Therefore, FFA would be important mediators for adaptation of muscle metabolism during prolonged physical exercise, ensuring the appropriate supply of oxygen and nutrients by increasing blood flow in contracting skeletal muscle.


Subject(s)
Humans , Exercise , Fatty Acids , Muscle Contraction , Muscle, Skeletal , Nitric Oxide
5.
Arq. bras. endocrinol. metab ; 48(6): 812-822, dez. 2004. ilus, graf
Article in Portuguese | LILACS | ID: lil-393739

ABSTRACT

Uma excessiva produção de espécies reativas pode ser prejudicial, superando a capacidade antioxidante e conduzindo a um desequilíbrio redox. A maioria das evidências da formação de espécies reativas em células musculares são "indiretas", ao passo que as evidências "diretas" ainda são escassas. As razões para este fato são múltiplas. Esta revisão sugere a utilização de sondas fluorescentes como DCFH (reativa ao H2O2), DAF-2 (reativa ao NO) e fluoróforo nitróxido (reativa ao O2À-) para determinação dessas espécies. Em adição, o presente estudo sugere que: 1) as medidas "indiretas" de ataque oxidativo em amostras sangüíneas não necessariamente refletem o ataque oxidativo ocorrido nas células musculares; 2) amostras de músculos isolados e homogenatos podem apresentar uma grande quantidade de tecido vascular contendo células endoteliais, hemácias e leucócitos, os quais podem gerar EROs e NO, dificultando a interpretação dos resultados; 3) as sondas fluorescentes DCFH-DA/DCFH, DAF-2-DA/DAF-2 e nitróxido são sensíveis na detecção do H2O2, NO e O2À- respectivamente, em tecido muscular durante contrações; 4) como método alternativo no estudo da produção de EROs e NO em músculo esquelético, culturas de células musculares e fibra muscular isolada são indicados como modelos experimentais.


Subject(s)
Animals , Humans , Muscle, Skeletal/chemistry , Muscle, Skeletal/cytology , Reactive Nitrogen Species/analysis , Reactive Oxygen Species/analysis , Muscle Contraction , Muscle, Skeletal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL